Nontarget effects of transgenic insecticidal crops: implications of source-sink population dynamics.
نویسندگان
چکیده
Widespread planting of transgenic insecticidal (TI) crops for pest control has raised concerns about potential harm to nontarget arthropods. Because the first generation of TI crops produce single Bacillus thuringiensis (Bt) toxins causing little or no harm to most nontarget arthropods, they are not likely to cause such negative effects. However, varieties of transgenic crops with multiple Bt toxins or novel toxins might be more harmful to nontarget arthropods. Field studies assessing nontarget effects typically compare the relative abundance of nontarget arthropods in TI crop fields to non-TI crop fields. However, for nontarget arthropods that are killed by TI crops, such analyses may miss important effects. Results from simulations of a spatially explicit population dynamics model show that large-scale planting of TI crops could cause three types of negative effects on nontarget arthropods that suffer mortality caused by TI crops: (1) lower abundance in TI fields than non-TI fields with little or no effect on abundance in non-TI fields, (2) lower abundance in TI fields than non-TI fields and decreased abundance in non-TI fields, and (3) loss of the arthropod from TI and non-TI fields. Simulation results show that factors increasing the potential for negative effects of TI crops on nontarget arthropods in non-TI fields are low reproduction, high emigration, high adoption of TI crops, high mortality in TI fields, insecticide sprays, and rotation of TI and non-TI fields. The results suggest that risk assessment should consider the regional distribution of transgenic crops and the life history traits of nontarget arthropods to identify the most vulnerable regions and nontarget species.
منابع مشابه
Selection of nontarget arthropod taxa for field research on transgenic insecticidal crops: using empirical data and statistical power.
One of the possible adverse effects of transgenic insecticidal crops is the unintended decline in the abundance of nontarget arthropods. Field trials designed to evaluate potential nontarget effects can be more complex than expected because decisions to conduct field trials and the selection of taxa to include are not always guided by the results of laboratory tests. Also, recent studies emphas...
متن کاملUptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem.
The planting of transgenic crops expressing Bacillus thuringiensis endotoxins is widespread throughout the world; the prolific increase in their application exposes nontarget organisms to toxins designed to control pests. To date, studies have focused upon the effects of Bt endotoxins on specific herbivores and detritivores, without consideration of their persistence within arthropod food webs....
متن کاملSustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology.
This review examines potential impacts of transgenic cultivars on insect population dynamics and evolution. Experience with classically bred, insecticidal cultivars has demonstrated that a solid understanding of both the target insect's ecology and the cultivar's performance under varied field conditions will be essential for predicting area-wide effects of transgenic cultivars on pest and natu...
متن کاملTRANSGENIC PLANTS AND INSECTS Assessing the Effects of Pest Management on Nontarget Arthropods: The Influence of Plot Size and Isolation
Evaluations of Þeld research on the nontarget effects of pest management, particularly the production of transgenic crops with insecticidal properties, suggest the methods used are sometimes unlikely to detect real differences among treatments. Among potential problems, abundance estimates may be scale-dependent for many arthropods, which move among experimental plots and between experimental p...
متن کاملBt Transgenic Plants
■ Abstract Transgenic plants expressing insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt), are revolutionizing agriculture. Bt, which had limited use as a foliar insecticide, has become a major insecticide because genes that produce Bt toxins have been engineered into major crops grown on 11.4 million ha worldwide in 2000. Based on the data collected to date, generally these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental entomology
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2007